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Abstract 
The aim of this paper is to explore the potential of the Casyopée’s computer environment for the 

teaching and learning of functions at upper secondary level. We are particularly interested in the 

“student” side with a study of appropriate situations using Casyopée and their effects on learning 

functions. We propose an approach to functions via the functional modelling of geometrical 

dependencies. The proposed functional modelling cycle helped us to design learning situations, 

analyze and clarify students’ types of activities about functions. Therefore, our study showed how 

such an approach to functions in a geometrical setting can exist at upper secondary level thanks to 

the geometric and algebraic environments such as Casyopée. 

 

 

1. Introduction   
Functions play a major role in mathematics and essential in experimental sciences for modelling 

real world phenomena. The notion of function is central in a wide range of mathematical topics 

studied especially at the secondary and the upper secondary level [12]. The existing research reports 

on numerous difficulties related to this notion, especially in coordinating understandings in different 

settings and dealing with representations in several registers.  

Recently, many authors paid special attention to the potential of digital technologies for the 

teaching and learning of functions ([1], [9], [7], [10], [3], [12]). Some authors focused on the 

experience of changes and movements and the understanding of this experience as covariation or 

dependency relation between magnitudes as key elements leading to the notion of function. For 

example, having used a motion sensor and a graphing calculator, Arzarello and Robutti [1] asked 

students to describe different types of movements in terms of mathematical functions by using 

graphs and tables of values. Then the covariations and dependencies between time and distance in 

the physical system were directly modelled by mathematical functions. In the Vygotskian 

perspective of semiotic mediation, Falcade, Laborde and Mariotti [7] chose the Dynamic Geometry 

(DG) as an application domain to provide students with qualitative experience of covariations and 

functional dependencies. Their research indicated that the DG tools (Dragging, Trace, Macro…) 

can be used to help students to understand the concept of function. 

Bloch [2] distinguished different settings for the concept of function: numerical, algebraic, 

geometrical, graphic, formal and analytical. She particularly put the emphasis on the interaction 

between graphic and formal settings for a didactical engineering focusing on the validation of the 

properties of function. She said at that time the geometrical setting is rarely used in the teaching and 

learning of functions. More recently, computer learning environments, especially those offering 

both geometrical and algebraic capabilities, have been designed with the aim of providing some sort 

of combination of DG and algebraic multirepresentation. These computer environments could 

encourage the interplay between two powerful mathematical worlds, different kinds of algebraic 

expression, as well as new opportunities for direct manipulation of dynamically linked geometric 

and symbolic forms of mathematical objects [12]. The potential of these computer environments 

encourage an assumption that digital technologies can contribute to the reintroduction of the 

geometrical setting in approaching functions. 

In this paper we propose an approach that considers functions as models of dependencies 

between magnitudes in a geometrical setting as defined by Bloch [2] and used by Falcade and her 
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colleagues [7]. More specifically, we propose a cycle of functional modeling for approaching 

functions in computational learning environments. This cycle of functional modelling distinguishes 

three domains of representation of a functional dependency: Physical System, Magnitudes, and 

Mathematical Functions. Our general hypothesis is that considering activities at the domain 

“Magnitudes” allows highlighting functional modelling that links activities about functions in the 

geometrical setting and in algebra. The activities at this intermediate domain could be fruitful for 

conceptualizing functions: choosing appropriate variables to quantify observations, distinguishing 

functional dependencies among covariations, building a pre-algebraic formula expressing the 

functional dependency… strongly contribute to make functions exist as models of dependencies in 

Geometry. Our approach to functions takes advantage of the potential of multiple representations 

offered by computational learning environments. 

 

2. Approaching functions through functional modelling of geometrical 

dependencies 

Many researchers emphasized the covariation view when approaching functions ([16], [5], [4]). The 

covariation view of function pays special attention to the understanding of the manner in which 

dependent and independent variables change as well as the coordination between these changes 

[12]. The essence of a covariation view is the consideration of simultaneous variation of between 

quantities/magnitudes in different level of dependency. However, according to Lagrange and 

Psycharis [12], the covariation view of function seems to be not obvious for the students and there 

is a need for situations that provide students with opportunities to think about the covariational 

nature of functions in modelling dynamic events. 

 

Figure 1: functional modelling cycle 
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In a recent work Lagrange and Artigue [10] proposed a typology of activities for function in 

computational learning environments. Based on this typology, we propose below a functional 

modelling cycle for approaching functions in computational learning environments. This functional 

modelling cycle is in the context of solving problems via an algebraic modeling. It doesn’t imply 

that the resolution of a problem is done in a linear way. 

In our functional modelling cycle we focus on the intermediate level “Magnitudes” between 

the “Physical System” (DG in our work) and the “Mathematical Functions”. The process of 

mathematization is divided into two steps ((1) and (2) in the figure 1). Problems or situations are 

provided to students in the “Physical System” where they can observe, explore and perceive 

dependency relations between geometrical magnitudes. At the level “Magnitudes”, students can 

create a “geometrical calculation” expressing the value of a magnitude, exploring the covariation 

between magnitudes and measures, choosing a magnitude as an independent variable and another 

magnitude as a dependent variable then considering the functional dependency (if there exists) 

between them, building a pre-algebraic formula expressing this functional dependency… These 

activities are fundamental and fruitful for conceptualizing functions as models of dependency 

between magnitudes. 

The step (2) concerns the process of calculating and representing algebraically the pre-

algebraic formula built at the intermediate level “Magnitudes”. At the level “Mathematical 

Functions” students obtain a mathematical function modelling a functional dependency between 

quantities/magnitudes in the situation given at the first level “Physical System”. The step (3) 

includes manipulations, transformations or algebraic proofs to find the mathematical solution of the 

situation then interpret the mathematical solution. 

The “Physical System” (DG in our case) is a level where enactive-iconic explorations are 

carried out: students can move objects, observe the transformation of the system with the help of 

technological tools, and start perceiving dependency relations between objects. At the level 

“Magnitudes” students can use the potential of technological tools to quantify explorations and 

observations, and make conjectures about the solution of the problem. The construction of a pre-

algebraic formula expressing a dependency relation between objects at this level is useful for 

supporting these observations and explorations. The “Mathematical Functions” is a level where the 

transformations and algebraic proofs take place. Finally, the return to the physical system aims at 

interpreting the mathematical solution. 

Our approach to functions based on the functional modelling cycle is innovative. Indeed, 

Falcade and her colleagues [7] for instance focused on the first level: they choose DG as a field to 

provide students with a qualitative experience of covariation and of functional dependency. 

Arzarello and Robutti [1] did one of the studies covering the first and third levels, but not the 

intermediate level “Magnitudes”. The level of quantities/magnitudes (distance, time) was actually 

taken in charge by the calculator: using implicit variables and units for distance and time, it directly 

transposed the movement into the mathematical functions with tables and graphs. 

We consider the functional modelling cycle as a conceptual framework for the teaching and 

learning of functions in computational learning environments. It supports our approach where the 

functions are considered as models of dependencies in an application domain. Indeed, the 

distinction between three levels of activities helps analyse the progression of functional meanings, 

highlighting the activities at the intermediate level “Magnitudes” that link sensual experiences and 

mathematical functions. These activities are fruitful for conceptualizing functions: choosing 

appropriate variables to quantify observations, distinguishing functional dependencies among 

covariations, building a pre-algebraic formula expressing the functional dependency… strongly 

contribute to make functions exist as models of physical dependencies. 
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3. Casyopée 
Casyopée

1
 is an open computer environment dedicated to the teaching and learning of functions at 

upper secondary level. Casyopée has two modules: the symbolic window and the DG window. 

The DG window provides the main features of a standard DG system such as the creation and 

animation of geometric objects. It offers specific aids for modelling a geometrical dependency into 

an algebraic function thanks to the so-called Geometric Calculation tab. This is a distinguishing 

feature of Casyopée. 

 

 

Figure 2: the Casyopée’s Dynamic Geometry window 

 

Three steps are needed to model algebraically a dependency between two geometrical 

magnitudes: 

(a) creating a “geometrical calculation” expressing the measure of one magnitude which is 

considered as the dependent variable 

(b) creating a “geometrical calculation” of another magnitude and selecting its measure as 

an independent variable. For an intended dependent variable, we can choose among several 

magnitudes an appropriate independent variable to establish a functional dependency 

(c) creating an algebraic function modelling this functional dependency between the two 

selected variables. Casyopée computes automatically the algebraic expression of the function then 

exports this function into the symbolic window. 

 

 
a) Creating a dependent variable 

 
b) Creating an independent variable OM 

                                                 
1
 A page for downloading Casyopée is available at http://www.casyopee.eu  

http://www.casyopee.eu/
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c) Cassyopée computes automatically the algebraic expression of the function 

Figure 3: Three steps for modelling a geometrical dependency by an algebraic function 

 

The symbolic window is linked to the geometric window. It provides students with tools to 

work with functions in the three registers: symbolic, graphic and numeric. It allows defining a 

function of one independent variable through an algebraic expression and a domain of definition, 

exploring the graph and displaying the table of values of a function, calculating the derivative of a 

function and studying its sign… An important feature of Casyopée is that a parameter can have two 

statuses that a user can switch at any time: animated and formal. In the animated status, a parameter 

is considered as a placeholder and has a value that the user can change by way of the slider bar. In 

the formal status, a parameter can be treated formally in algebraic transformations. 

 

 

 

Figure 4: the animated and formal statuses of a parameter in Casyopée 

 

 

Figure 5: the Casyopée’s symbolic window 
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Figure 6: the exportation form connecting the two windows 

 

4. Experiments 
Consistent with our sensitivity to students’ learning with technology, the experiment is organized 

over a long time of two years and designed in order that students learn about functions while getting 

acquainted with Casyopée’s associated capabilities [11]. The first experiment was designed and 

implemented in two 11
th

 scientific grades classes in France. It consisted of six sessions and was 

organized in three parts. The first part focused on capabilities of Casyopée’s symbolic window and 

on quadratic functions. In the second part (two sessions) we first aimed to consolidate students’ 

knowledge of geometrical situations and to introduce them to the geometrical window’s 

capabilities. In the third part students had to solve a problem of maximum area taking advantage of 

all Casyopée features and of all notions they learnt in the previous sessions. 

The second experiment took place in the second year (12th grade). It consisted of three 

sessions: (1) a session aiming at the consolidation of Casyopée’s use some months after the first 

experiment: the goal is to model a variable area in a square; the function at stake is quadratic, (2) a 

session where students have to use more completely Casyopée’s functionalities, especially for the 

management of parameters and for symbolic calculation, again in a modelling activity, the function 

at stake being a third degree parametric polynomial, (3) a session involving the study of a family of 

logarithm functions, a more classical task with regard to the curriculum as compared with the 

geometrical modelling in the two other sessions, the goal being that students become aware of how 

they can use Casyopée to prepare for the baccalaureate, an exam they have to pass at the end of the 

second year. The semi-directed interview was conducted at the end of the second year, before the 

baccalaureate in order to understand the evolution students’ relationship with mathematics and with 

Casyopée. 

During the two experiments, we observed selected teams of students. In this paper, we focus 

particularly on two students Elina and Chloé working as a team, which according to the first 

experiment had a favourable instrumental genesis and were representative of the selected teams. 

According to their teacher (a member of the Casyopée group), they were good students. The 

students have been studying Pre-Calculus including the topics such as functions (polynomial 

functions, rational functions…), limits, derivatives. Students worked in groups with a computer to 

accomplish a collaborative task. 

The type of geometric optimization problem presented in this paper (see below) is 

previleged by the French new 2009 curriculum for approaching functions with the help of 

technology. The classroom observations were carried out by way of screen and video recording, and 

of semi-directed interviews. We consider here a milestone of our classroom observations in the 

second experiment: 
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The problem:  

 

In an orthogonal coordinate system Oxy, 

consider the point I(0; a), a being a positive 

parameter and the point A of coordinates 

(10; 0). M is a free point on the segment 

[OA], N is on the parallel to the y-axis 

passing by A such that the triangle IMN is 

always rectangle in M. When M is in A, 

then N is also in A. The problem is to find 

the position of M to maximize the area of 

the triangle IMN. 

 
 

Figure 7: an optimization problem 

 

In the worksheet given to the students, they are asked to solve this problem with Casyopée 

according to the following steps: 

 Building a dynamic geometrical figure 

 Exploring and conjecturing 

 Modelling a geometrical dependency 

 Using an algebraic procedure 

 Generalising. 

The following table shows the relationship between these mathematical subtasks and the 

functionalities of the software: 

Table 1: Mathematical subtasks and Casyopée’s functionalities 

Mathematical subtasks Casyopée’s functionalities 

 Building a geometrical figure  Creating objects in dynamic geometry 

 Exploring and conjecturing   Creating a geometric calculation, dragging 

free points, observing numeric values 

 Modelling a dependency  Choosing an independent variable, 

exporting a function 

 Using an algebraic procedure  Using Casyopée’s algebraic 

transformations, and justifications 

 Generalising  Animating parameters 

 

The design of the dynamic figure is made in the Casyopée’s DG window. Then students can 

create a geometrical calculation expressing the area of the triangle, for example 
1

2
IM MN  to 

explore the variation of its numerical values. For instance, students can observe the covariation 

between a magnitude or measure involving the free point M and the area. For the case a = 5, when 

they move the free point M from the origin O to the point A the numerical value of the area 

decreases then increases until the maximum value of 25 when M is the midpoint of the segment 

[OA]. 
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After determining a geometrical calculation corresponding to a magnitude whose variation 

is to study, the functional modelling with Casyopée is characterized by the action to choose a 

magnitude as an independent variable and then export the resulting functional dependency into the 

symbolic window. Students can choose an appropriate independent variable among several possible 

choices: the distance OM, the abscissa of the point M, the distance AM… Casyopée will provide a 

feedback on the validity of each choice of variable. Note that an inappropriate choice of 

independent variable implies consequences upon the algebraic expression of function. For example, 

if students choose the distance MN as an independent variable, this variable is accepted by 

Casyopée but the algebraic expression of the exported function is too complex. On the other hand, if 

they take the variable AN Casyopée provide a feedback indicating the dependency is not unique 

(non functional) and Casyopée cannot compute an algebraic formula expressing this dependency. 

 

 
a) 

 

b) 
 

c) 

Figure 8 : (a) Exploring the covariation; (b) considering the functional dependency between the two 

variables; (c) Casyopée’s feedback indicating the inappropriate choice of independent variable c1 

 

Then students can export the functional dependency into the symbolic window in order to 

obtain its algebraic model. Casyopée will provide a feedback indicating the domain of definition 

and an algebraic expression of the function. For instance, with the choice of independent variable x 

= OM , the mathematical function expressing the area of the triangle IMN is: 

 

 
 2 2

.
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By considering the signs of the derivative '( )f x , there will be four cases depending on the different 

values of the parameter a: 

 0 5a  : The function ( )f x  admits two extrema on the interval (0;10)  (a local 

minimum 
2

1

10 100 3

3

a
x

 
  and a local maximum 

2

2

10 100 3

3

a
x

 
 ). In this 

case, the function ( )f x  attains its maximal value at 
2

2

10 100 3

3

a
x x

 
  , that 

means the area of the triangle IMN is maximal for M has coordinates 
210 100 3

( ;0)
3

a
M

 
. 

 5a  : The function ( )f x  admits two extrema on the interval (0;10)  (a local minimum 

1

5

3
x   and a local maximum 2 5x  ). In this case, the function ( )f x  attains its maximal 

value 25 at 0 0x x   or 2 5x x  , that means the area of the triangle IMN is maximal 

for M O  (O  is the origin) or M  is the midpoint of the segment  OA . 
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Figure 9: the dynamic figure of the problem and the graph of the functions for the case 5a   
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3

a  : The function ( )f x  admits two extrema on the interval (0;10)  (a local 

minimum 
2
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3
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  and a local maximum 

2

2
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 ). In this case, 

the function attains its maximal value 5a at 0x  , that means the area of the triangle IMN is 

maximal for M O . 

 
10

3
a  : The function ( )f x  is decreasing on the interval (0;10) . In this case, the function 

attains its maximal value 5a at 0x  , that means the area of the triangle IMN is maximal for 

M O . 

The exportation of a function into the symbolic window corresponds to a change of setting 

from the geometrical setting to the algebraic setting. In the algebraic setting students can apply 

different algebraic techniques to the algebraic form of the function and mobilize different semiotic 

registers [6] in order to find a proof. They can use the graphic register to complete explorations of 

the variation of the area and the maximum value of the function. They can also pass from the 

graphic register to the symbolic register to perform algebraic transformations. Finally, a return into 

the geometric window is necessary for interpreting the mathematical solution of the problem. 
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a) Algebraic transformations in the 

symbolic register 

 

 

 

b) Explorations in the graphic register 

 

c) Explorations in the numeric register 

Figure 10: Different registers in the algebraic setting 

 

5. Classroom observations 
We interpret here our observations from a point of view of the functional modelling cycle in order 

to specify students’ activities about functions in three levels, together with their difficulties related 

to these activities. 

 

Passage between the Physical System and the Magnitudes levels: 

Creating a geometrical calculation: The observations showed a difficulty in passing from the 

“Physical System” level to the “Magnitudes” level. The students spent a lot of time to design a 

geometric figure then create a geometrical calculation expressing the area of the triangle IMN and 

choose an appropriate independent variable. 
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Figure 11: The passage between the two levels of the team Elina-Chloé 

 

Choosing an independent variable: The action of choosing an independent variable 

corresponds to the transition from the type of enactive-iconic activities to the type of generative 

activities in the same “Magnitudes” level. We found that the choice of an appropriate independent 

variable is not easy for most of the students. The working in small teams facilitated discussions 

among themselves to find a good independent variable: 

Chloé:  Choosing an independent variable? Did we do it with the altitude last time? 

Elina:  No, the distance OM, I think it will be a good variable. 

Chloé:  Yes {She chose this variable then exported the function} 

Elina:  Its domain? 

Chloé:  It is the set of real numbers. Oh no, it is [0;10]. 

Elina:  Look! It is here {She pointed to the screen}. 

Observer: Finally, what are the steps of the modelling process? 

Chloé:  One draws a figure and makes conjectures 

Elina:  One makes a calculation 

Chloé:  Yes, we draw a figure and make a calculation. 

Elina:  Then we choose a variable 

Chloé:  Yes, we export the function and try to validate the conjecture. 

 

Passage between the Magnitudes and the Mathematical Functions levels: 

Exporting a function: The students had difficulty in the transition between these two levels, marked 

by the aids of the teacher. However, the regular use of Casyopée in classroom during the 

experiment helped them to overtake this difficulty. The feedbacks of Casyopée on the complexity of 

the algebraic expression of the exported function helped them to find a more appropriate variable. 
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Figure 12: Passage between these two levels and the algebraic proof of this team 

 

Passage between the Mathematical Functions and the Physical System levels: 

After having found the mathematical solution, the team returned into the DG window of Casyopée 

to interpret the two possible positions of the point M. The Casyopée’s characteristic of integrating 

the graphics in the DG window has really facilitated the connection between these two levels. 

 

The interview at the end of the experimental sequence: 

We report here some of the two students’ answers. The first outcome is that after two years of use, 

the students saw Casyopée as a tool whose appropriation had not been easy: 

“We did not know all functionalities, tools… in Casyopée. We obtained expressions, but we 

did not know how to manage them. We did not know which functionalities to use”. 

They recognized that these difficulties are linked to the understanding of the mathematical content: 

“The most difficulty is to choose an independent variable. It is important to choose an 

appropriate variable”. 

In spite of the difficulties observed by the first uses, the students also expressed positive feelings 

relatively to specificities of Casyopée, especially the help for modelling and the link between 

symbolic and geometrical windows: 

“Choosing variables is the interesting part. To perform all the process is great: 

 constructing the figure, table of variation, calculation of the derivative… We have the 

 algebraic and geometrical sides together. We see better how a function “reacts”, it is 

 convenient and interesting”. 

Students identified clearly different functionalities and how they could help exploring and proving 

freely: 

“We can try different variables, animate the figure, and visualize functions (several at the 

 same time), draw a table of signs, find the derivative”. 

 

6. Conclusions 
One of the results of our work is to show the possibility of an approach where the functions are 

considered as models of dependencies in a geometrical setting. In fact, the activities based on the 

study of dependency relations between magnitudes and measures allowed students to progress in 

their understanding of the concept of function. Such an approach is consistent with what is currently 

mentioned by the French curriculum in the teaching and learning of functions at upper secondary 

level. 
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Our approach highlighted the functional modelling which links a model in an application 

domain to a mathematical model. We focused on the “Magnitudes” intermediate level of our 

functional modelling cycle. From our point of view the students’ activities at this level such as 

creating a geometrical calculation expressing the value of a magnitude, exploring the covariation 

between magnitudes and measures, choosing an appropriate magnitude as an independent variable 

to quantify the geometrical functional dependency, computing a mathematical function expressing 

this functional dependency… are fruitful for conceptualizing functions. Combining this approach 

with the experimental perspective led us to the construction of appropriate learning situations for 

approaching functions that have proven effective in the actual context of teaching and learning 

functions at upper secondary level (Minh, 2012). The functional modelling cycle helped us to 

design learning situations, analyze and clarify students’ types of activities about functions at upper 

secondary level. Therefore, our study showed how an approach of functions in a geometrical setting 

can exist at upper secondary level thanks to the geometric and algebraic environments such as 

Casyopée. 
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